230 research outputs found

    Quantitative Membrane Proteomics Reveals New Cellular Targets of Viral Immune Modulators

    Get PDF
    Immunomodulators of pathogens frequently affect multiple cellular targets, thus preventing recognition by different immune cells. For instance, the K5 modulator of immune recognition (MIR2) from Kaposi sarcoma–associated herpesvirus prevents activation of cytotoxic T cells, natural killer cells, and natural killer T cells by downregulating major histocompatibility complex (MHC) class I molecules, the MHC-like molecule CD1, the cell adhesion molecules ICAM-1 and PECAM, and the co-stimulatory molecule B7.2. K5 belongs to a family of viral- and cellular-membrane-spanning RING ubiquitin ligases. While a limited number of transmembrane proteins have been shown to be targeted for degradation by this family, it is unknown whether additional targets exist. We now describe a quantitative proteomics approach to identify novel targets of this protein family. Using stable isotope labeling by amino acids, we compared the proteome of plasma, Golgi, and endoplasmic reticulum membranes in the presence and absence of K5. Mass spectrometric protein identification revealed four proteins that were consistently underrepresented in the plasma membrane of K5 expression cells: MHC I (as expected), bone marrow stromal antigen 2 (BST-2, CD316), activated leukocyte cell adhesion molecule (ALCAM, CD166) and Syntaxin-4. Downregulation of each of these proteins was independently confirmed by immunoblotting with specific antibodies. We further demonstrate that ALCAM is a bona fide target of both K5 and the myxomavirus homolog M153R. Upon exiting the endoplasmic reticulum, ALCAM is ubiquitinated in the presence of wild-type, but not RING-deficient or acidic motif–deficient, K5, and is targeted for lysosomal degradation via the multivesicular body pathway. Since ALCAM is the ligand for CD6, a member of the immunological synapse of T cells, its removal by viral immune modulators implies a role for CD6 in the recognition of pathogens by T cells. The unbiased global proteome analysis therefore revealed novel immunomodulatory functions of pathogen proteins

    Quality of life data from EQ-5D for evidence-based health service practice in dialysis care

    Get PDF
    Hemodialysis (HD) and peritoneal dialysis (PD) are therapeutic options for patients with end-stage-renal-disease (ESRD), if transplantation is not available. Mortality rates for HD and PD are similar, while PD is generally the less costly alternative. Percentage of HD and PD shows considerable variability between high income countries (for PD from 5-7% in Germany and Switzerland up to 19- 24% in the UK and Scandinavia). Patient reported outcomes, such as quality of life (QOL), can provide complementary evidence for planning of patient oriented dialysis services. Profile instruments (e.g. SF36, KDQOL) show no consistent QOL differences between HD and PD. However, single index preference-based QOL measures (such as EQ5D), may add new information and are useful for later health economic evaluations. We aimed to collect current evidence for QOL of ESRD patients as measured with EQ-5D

    Viral Takeover of the Host Ubiquitin System

    Get PDF
    Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage

    Interaction of c-Cbl with Myosin IIA Regulates Bleb Associated Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus

    Get PDF
    KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c-Cbl and myosin IIA plays a crucial role in blebbing and macropinocytosis during viral infection and suggests that targeting c-Cbl could lead to a block in KSHV infection

    The Great Escape: Viral Strategies to Counter BST-2/Tetherin

    Get PDF
    The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma–associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as “tetherin”. However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses

    ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model

    Get PDF
    For the first time, the Limited-Area Mode of the new ICON (Icosahedral Nonhydrostatic) weather and climate model has been used for a continuous long-term regional climate simulation over Europe. Built upon the Limited-Area Mode of ICON (ICON-LAM), ICON-CLM (ICON in Climate Limited-area Mode, hereafter ICON-CLM, available in ICON release version 2.6.1) is an adaptation for climate applications. A first version of ICON-CLM is now available and has already been integrated into a starter package (ICON-CLM_SP_betal). The starter package provides users with a technical infrastructure that facilitates long-term simulations as well as model evaluation and test routines. ICON-CLM and ICON-CLM_SP were successfully installed and tested on two different computing systems. Tests with different domain decompositions showed bit-identical results, and no systematic outstanding differences were found in the results with different model time steps. ICON-CLM was also able to reproduce the large-scale atmospheric information from the global driving model. Comparison was done between ICON-CLM and the COnsortium for Small-scale MOdeling (COSMO)-CLM (the recommended model configuration by the CLM-Community) performance. For that, an evaluation run of ICON-CLM with ERA-Interim boundary conditions was carried out with the setup similar to the COSMO-CLM recommended optimal setup. ICON-CLM results showed biases in the same range as those of COSMO-CLM for all evaluated surface variables. While this COSMO-CLM simulation was carried out with the latest model version which has been developed and was carefully tuned for climate simulations on the European domain, ICON-CLM was not tuned yet. Nevertheless, ICON-CLM showed a better performance for air temperature and its daily extremes, and slightly better performance for total cloud cover. For precipitation and mean sea level pressure, COSMO-CLM was closer to observations than ICON-CLM. However, as ICON-CLM is still in the early stage of development, there is still much room for improvement

    Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are 19 to 23 nucleotide–long RNAs that post-transcriptionally regulate gene expression. Human cells express several hundred miRNAs which regulate important biological pathways such as development, proliferation, and apoptosis. Recently, 12 miRNA genes have been identified within the genome of Kaposi sarcoma–associated herpesvirus; however, their functions are still unknown. To identify host cellular genes that may be targeted by these novel viral regulators, we performed gene expression profiling in cells stably expressing KSHV-encoded miRNAs. Data analysis revealed a set of 81 genes whose expression was significantly changed in the presence of miRNAs. While the majority of changes were below 2-fold, eight genes were down-regulated between 4- and 20-fold. We confirmed miRNA-dependent regulation for three of these genes and found that protein levels of thrombospondin 1 (THBS1) were decreased >10-fold. THBS1 has previously been reported to be down-regulated in Kaposi sarcoma lesions and has known activity as a strong tumor suppressor and anti-angiogenic factor, exerting its anti-angiogenic effect in part by activating the latent form of TGF-β. We show that reduced THBS1 expression in the presence of viral miRNAs translates into decreased TGF-β activity. These data suggest that KSHV-encoded miRNAs may contribute directly to pathogenesis by down-regulation of THBS1, a major regulator of cell adhesion, migration, and angiogenesis

    Structural and Biochemical Bases for the Inhibition of Autophagy and Apoptosis by Viral BCL-2 of Murine γ-Herpesvirus 68

    Get PDF
    All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine γ-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus
    corecore